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The regulatory landscape of the brain serves as a basis for understanding the molecular, cellular, and developmental underpinnings of brain
disease. Genetic variation (f) can lead to changes in chromatin architecture (e), which in turn affect gene regulation. Gene expression (d) changes
in one or multiple cell types (c) can perturb brain development (b). Alterations in any of these layers contributing to brain function throughout the
lifespan of an individual can result in a variety of brain diseases (a). Enh, enhancer; Pro, promoter.



Current view of Gene expression

Post-transcription

Enhancer RNAs,
Distal enhancers,

DNA methylation,
Gene / Histone methylation

and acetylation and
Transcription \fhromatin loops
-Splicing \N

-Editing on-coding
-Localization MRNA RNAs and

-Translation / microRNAs
-Stabilization
Translation

Protein




Epigenetic mechanisms regulate gene transcription
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General Biology overview: Transcription factors, enhancers and
insulator proteins regulate the transcriptional complex

DNA is not linear but organized in high level 3D structures
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An enhancer is a short (50-1500 bp) region of
DNA that can be bound by proteins
(activators) to increase the likelihood that
transcription of a particular gene will occur.
An enhancer may be located upstream or
downstream of the genes it regulates

An insulator is a genetic boundary element
that limits the interaction between enhancers
and promoters. Insulators thus determine the
set of genes an enhancer can influence.

Insulators have also been found to cluster
at the boundaries of topologically
associating domains (TADs) and may have
arolein partitioning the genome into
"chromosome neighborhoods"
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Enhancers are bound by the histone acetyl-
transferase p300-CBP and transcription
factors bind to the promoter and the enhancer
associated proteins and enhancer RNAs
increase the activity of the promoter.



Genome-Wide Quantitative Enhancer
Activity Maps Identified by STARR-seq

Cosmas D. Arnold, Daniel Gerlach, Christoph Stelzer, Lukasz M. Boryn, Martina Rath, Alexander Stark*

Genomic enhancers are important regulators of gene expression, but their identification is a challenge,
and methods depend on indirect measures of activity. We developed a method termed STARR-seq to
directly and quantitatively assess enhancer activity for millions of candidates from arbitrary sources of
DNA, which enables screens across entire genomes. When applied to the Drosophila genome, STARR-seq
identifies thousands of cell type—specific enhancers across a broad continuum of strengths, links
differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative
enhancer map. This map reveals the highly complex regulation of transcription, with several
independent enhancers for both developmental regulators and ubiquitously expressed genes. STARR-seq
can be used to identify and quantify enhancer activity in other eukaryotes, including humans.

Fig. 1. STARR-seq genome-
wide quantitative enhancer
discovery. (A) STARR-seq re-
porter setup [enh., enhancer
candidate; ORF, open-reading
frame (here: GFP); pA site,
polyadenylation site; +, tran-
scriptional activation]. (B)
STARR-seq (blue) and input
(gray) fragment densities in
the srp locus. Black boxes
denote predicted enhancers
(“peaks”). (C) STARR-seq and
luciferase signals are linearly
comelated: R?, coeffident of
determination and Pearson
correlation coefficient (PCC
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STARR-seq: Self-transcribing active regulatory region sequencing




Massively parallel quantification of the regulatory
effects of noncoding genetic variation in a human

cohort STARR-seq

Christopher M. Vockley,'*® Cong Guo,”*® William H. Majoros,**®

Michael Nodzenski,” Denise M. Scholtens,” M. Geoffrey Hayes,® William L. Lowe r.,°

and Timothy E. Reddy*”

We report a novel high-throughput method to
empirically quantify individual-specific regulatory
element (i.e. enhancer) activity at the population scale.
The approach combines targeted DNA capture with a high-
throughput reporter gene expression assay. As
demonstration, we measured the activity of more than 100
putative regulatory elements from 95 individuals in a single
experiment. In agreement with previous reports, we found
that most genetic variants have weak effects on distal
regulatory element activity. Because haplotypes are
typically maintained within but not between assayed
regulatory elements, the approach can be used to identify

causal regulatory haplotypes that likely contribute to human

phenotypes. Finally, we demonstrate the utility of the
method to functionally fine map causal regulatory variants
in regions of high linkage disequilibrium identified by
expression quantitative trait loci (eQTL) analyses.

Genome Research (2015) 25:1206-1214 Published by Cold
Spring Harbor Laboratory Press; ISSN 1088-9051/15; www.genome.org
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PHILOSOPHICAL Many human accelerated regions are
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Current view of chromosome architecture revealed by 3D and Hi-C methods

General Biology overview:
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Enhancer RNAs: Insights Into Their Biological Role

Cortés-Fernandez de Lara et a, Epigenetics insights 2019

The first chromatin found to have an unusual looping 3D structure is a particular group of
five genes making the beta subunit of hemoglobin. The insulator protein CTCF holds
together long-range interactions of different sections of the chromatin near the TADs.
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Chromosome Conformation Technologies
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Table 1 ATAC-seq

Chromatin architecture in the human brain tissue
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The transcription factor NeuroD1 reprograms chromatin and
transcription factor landscapes to induce the neuronal program

Neural Progenitors Neurons

Neuronal genes
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@ H3k27mes @ H3K27ac ™ NeuroD1 motif

Abhijeet Pataskar et al EMBO J 2016




Epigenetic mechanisms in synaptic activity and Ca2+-
dependent transcriptional regulation
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Chromatin IP method to determine which genes are bound to transcription factors

Chromatin Immuno-Precipitation (ChIP) assay

ChIP assays demonstrate reciprocal
ChiP Assay Microarray analysis aSSOCiation Of MECPZ and CREB

of Potential Transcription

O Factor Targets with the BDNF exon IV promoter

Chemical crosslink in vivo .
l input ChIP
MAAO“O"( Tissue expressing CREB CREB KO KCl - + - + - &

; Isolate RNA Islate RNA > b db - = -BDNF(IV)
l Shear chromatin
CREB + probe CREB KO probe
T~ (red) (green) (MeCP2) (CREB)

UN & | |

Y

Immunoprecipitate e

lwith CREB antibody ® 6 @ 6O

_ ®e 00 0o

> © O O © @

@: ©000®e

® O @ O O
PCR amplify

bound DNA TCACGTCA

sequences

— l Depolarization

Transcription

coactivating
complex \

-38 Z CRE _-31 mouse BDNF exon IV

less-methylated DNA

TCACGTCA




Highly Parallel Genome-wide Expression Profiling
of Individual Cells Using Nanoliter Droplets

Evan Z. Macosko,’-%3* Anindita Basu,*° Rahul Satija,*®’ James Nemesh, 22 Karthik Shekhar,* Melissa Goldman,’:2
Itay Tirosh,* Allison R. Bialas,® Nolan Kamitaki,'->* Emily M. Martersteck,® John J. Trombetta,* David A. Weitz,%'°
Joshua R. Sanes,® Alex K. Shalek,*'7-1? Aviv Regev,*'3.14 and Steven A. McCarroll'-2-3*

Cell 161, 1202-1214, May 21, 2015

Graphical Abstract
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1000s of DNA-barcoded single-cell transcriptomes
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Evan Z. Macosko, Anindita Basu, ...,
Aviv Regev, Steven A. McCarroll

Correspondence

emacosko@genetics.med.harvard.edu
(E.Z.M.),
meccarroll@genetics.med.harvard.edu
(S.A.M.)

In Brief

Capturing single cells along with sets of
uniquely barcoded primer beads together
in tiny droplets enables large-scale,
highly parallel single-cell transcriptomics.
Applying this analysis to cells in mouse
retinal tissue revealed transcriptionally
distinct cell populations along with
molecular markers of each type.

https://www.sciencedirect.com/science/article/pii/S0092867415005498
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Highly Parallel Genome-wide Expression Profiling
of Individual Cells Using Nanoliter Droplets

Cell 161, 1202-1214, May 21, 2015
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Cell

Droplet Barcoding for Single-Cell Transcriptomics

Applied to Embryonic Stem Cells

Authors

Allon M. Klein, Linas Mazutis, ...,
David A. Weitz, Marc W. Kirschner

Cell 161, 1187-1201, May 21, 2015
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Highlights

> Cells are captured and barcoded in nanolitre droplets with
high capture efficiency

» Each drop hosts a hydrogel carrying photocleavable
combinatorially barcoded primers

» MRNA of thousands of mouse embryonic stem and
differentiating cells are sequenced

» Single-cell heterogeneity reveals population structure and
gene regulatory linkage (and differentiation trajectories)

https://www.sciencedirect.com/science/article/pii/SO
092867415005000?via%3Dihub
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Klein, et al, 2015

Validation of single cell capture and barcoding
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Figure 3. A Droplet Barcoding Device
(A) Microfluidic device design, see also Figure S2.

(B and C) Snapshots of encapsulation (left) and collection (right) modules, see also Movies S1 and S2. Arrows indicate cells (red), hydrogels (blue), and flow
direction (black). Scale bars 100 um.

(D) Droplet occupancy over time.

(E) Cell and hydrogel co-encapsulation statistics showing a high 1:1 cell:hydrogel correspondence.

(F) BioAnalyzer traces showing dependence of library abundance on primer photo-release.

(G) Number of cells/controls as a function of collection volume.

https://www.sciencedirect.com/science/article/pii/S0092867415005000?via%3Dihub#mmc7
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Single-cell genomics identifies
cell type-specific molecular

changes in autism

Dmitry Velmeshev'™*, Lucas Schirmer™*, Diane Jung"”®, Maximilian Haeussler®,
Yonatan Perez"*, Simone Mayer"™®, Aparna Bhaduri'®, Nitasha Goyal'*7,

David H. B 'l]l""ﬂ"’,! id B. Kri ' in].j.“

17 May 2019
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Fig. 1. Overview of the experimental approach and snRNA-
seq dataset. (A) Cortical regions analyzed with snRNA-

seq including the PFC and ACC regions. (B) Experimental
approach to snap-frozen tissue sample processing and nuclei
isolation. {C) Unbiased clustering of snRNA-seq data. Cell types

were annotated according to expression of known marker
genes. (D) Expression of excitatory neuronal subtype
markers. (E) Inhibitory neuronal subtype marker expression.
(F) Markers of NRGN-expressing neurons. (G) Markers

of glial cell types and endothelial cells.

Velmeshev et al.,

Science 364, 685-689

t-Distributed Stochastic
Neighbor Embedding”
or t-SNE — Laurens van
der Maaten
lvdmaaten.github.io »
tsne is a technique for
dimensionality reduction
that is particularly well
suited for the
visualization of high-
dimensional datasets.
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Overall, they found that synaptic signaling of upper-layer excitatory neurons
and the molecular state of microglia are preferentially affected in autism.
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Weaving New
Insights for the
Genetic
Regulation

of Human
Cognitive
Phenotypes

Bernard Mulvey.and
Joseph D. Dougherty:

Cell 172, 2018, p. 11-13
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In Brief

A high-reseclution map of non-coding
regulatory elements driving human
cortical neurogenesis reveals uniquely
human enhancers linked to common
genetic varnants associated with
cognitive function.

1) They defined non-coding regions regulating gene expression in developing human cortex
2) Human-gained enhancers preferentially regulate genes expressed in outer radial glia

3) A distal human-gained enhancer regulates FGFR2 during neocortical development

4) Genetic variation influencing cognition and brain size act during neurogenesis
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Common schizophrenia risk variants are enriched
in open chromatin regions of human glutamatergic
neurons
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