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Although many regulatory elements in the non-coding genome

are linked to brain development and disease, deciphering their

function has been challenging due to the lack of a genomic

toolbox. However, recent advances in high throughput

sequencing techniques have allowed us to begin decoding its

function, enhancing our understanding of the regulatory

landscape that underpins human traits and brain disorders.

Here, we review how the regulatory landscape of the human

brain undergoes dynamic changes across neurodevelopment,

different cell types, and human evolution. We then discuss how

regulatory landscapes shed light onto the molecular basis of

neuropsychiatric disorders and guide the development of

specifically targeted molecular therapies. Finally, we offer

some thoughts on how these discoveries might impact the

direction of future studies.
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Introduction
The dynamic nature of the genome across human brain

development provides a unique avenue to study its

implication in brain function and disease. The genet-

icist’s toolbox has been rapidly expanding, allowing

researchers to examine the regulatory landscape of the

brain, its developmental dynamics, cellular complexities,

and how its dysfunction contributes to disease. For exam-

ple, RNA-seq has successfully delineated transcriptomic

complexities of the brain across brain regions and devel-

opment [1]. Regulatory codes and elements have been

identified through various genomic resources including

transcription factor binding sites (TFBS), quantitative

trait loci (QTLs), ChIP-seq, and ATAC-seq. Hi-C has
www.sciencedirect.com 
greatly advanced our understanding of how chromatin is

folded in the nucleus, highlighting the importance of

distal chromatin interactions in gene regulation [2,3].

Single-cell sequencing technologies are reengineering

these tools to decipher regulatory dynamics in a cell-type

specific manner [4]. In combination, these tools allow us

to decipher how genetic sequences drive gene regulation

via genetic variation (QTLs), trans-regulators (ChIP-seq),

chromatin accessibility (ATAC-seq), and chromosome

conformation (Hi-C) in the human brain (Table 1).

Here we summarize our current knowledge of the regu-

latory landscape of the human brain across development

and different brain cell types. We review how functional

genomic datasets can help decipher the regulatory logic of

the human brain and highlight the need to study psychi-

atric disorders in a temporal-specific and cell type-specific

fashion (Figure 1). Finally, we discuss the implication of

human evolution in shaping the regulatory architecture of

brain development and function.

Regulatory landscape of the developing brain
shapes neuropsychiatric disorder risk
Transcriptomic profiling across the developmental time

span indicated highly dynamic transcriptomic landscape

with a sharp transition between prenatal and postnatal

stages [5�]. Prenatal to postnatal transition in gene expres-

sion coincides with changes in chromatin architecture that

encompass enhancers (measured by H3K27ac) and chro-

matin interaction (measured by Hi-C) [5�,6]. Chromatin

interaction and accessibility profiles in two layers of the

developing cortex, the cortical plate (CP, enriched for

postmitotic neurons) and germinal zone (GZ, enriched

for neural progenitors), further demonstrated dynamic

chromatin architecture during key processes during

neurodevelopment such as cortical neurogenesis and

neural differentiation [9,12]. In line with these findings,

co-expression networks built across human brain

development showed that transcriptional regulators and

chromatin remodelers peak during neurodevelopment,

suggesting extensive chromatin rewiring that accompa-

nies cell type composition changes [14]. Based on a recent

study showing that the combination of enhancer activity

and chromatin contact frequency accurately predicts gene

regulatory architecture [15], chromatin interaction and

accessibility profiles across development would provide

important insights into the gene regulatory mechanism

that is critical for understanding proper brain

development and function.

Another important cis-regulatory element includes

eQTL: genetic variation associated with gene expression
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2 Molecular and genetic bases of disease

Table 1

Chromatin architecture in the human brain tissue

Technique Measures Available datasets

ChIP-seq
Histone modification and transcription

factor (TF) binding sites

Fetal brain: [5�]
Adult brain: [6]

Sorted neurons and glia: [7�,8]
ATAC-seq Chromatin accessibility Fetal brain: [9]

Adult brain: [10]

Sorted neurons and glia: [11]

Hi-C Three-dimensional chromatin interaction Fetal brain: [12]

Adult brain: [6,13]

Sorted neurons and glia: [7�,70]
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The regulatory landscape of the brain serves as a basis for understanding the molecular, cellular, and developmental underpinnings of brain

disease. Genetic variation (f) can lead to changes in chromatin architecture (e), which in turn affect gene regulation. Gene expression (d) changes

in one or multiple cell types (c) can perturb brain development (b). Alterations in any of these layers contributing to brain function throughout the

lifespan of an individual can result in a variety of brain diseases (a). Enh, enhancer; Pro, promoter.
(Box 1). So far, three studies have reported eQTLs

identified in the fetal brain [16–18]. While some fetal

brain eQTLs continue to be associated with gene expres-

sion into adulthood, many fetal brain eQTLs linked to
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neuropsychiatric disorder risk loci are temporal-specific

[16–18]. This temporal-specific pattern could be due to

the cellular composition change during neurodevelop-

ment, which requires further investigation. These results
www.sciencedirect.com
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Box 1 Building blocks and emerging principles of gene regulation

The epigenetic landscape acts as a blueprint for gene regulation throughout the lifespan of an organism. Here, we briefly discuss a few building

blocks of the cis-regulatory landscape (regulatory architecture that affects nearby regions within a chromosome) that have been used to infer

cognate genes for non-coding risk variants, and how they can be studied.

TADs: Topologically associating domains (TADs) define frequently self-interacting regions of the genome [33–35]. TADs often define the

boundaries for enhancer-promoter interactions, and hence play a critical role in gene regulation. Disruption of TAD boundaries is coupled with

abnormal enhancer rewiring, and subsequent gene dysregulation is associated with a wide range of diseases including cancer and congenital limb

deficiencies [36–39]. A recent study has also shown that the expansion of tandem repeats in fragile X syndrome leads to the disruption of TAD

boundaries, suggesting a role of TADs in brain disease [40].

Chromatin interactions: While TADs define the boundaries of grouped enhancers and promoters, the fine-tuning of gene regulation is mediated

by chromatin interactions within TADs. Enhancer-promoter interactions, one of the most representative examples of chromatin interactions, have

been shown to play a pivotal role in gene regulation and have been widely used to link non-coding variation to putative target genes [6,12,13].

However, there are other types of chromatin interactions (e.g. promoter-promoter interactions) whose role in gene regulation remains elusive,

necessitating additional studies to unveil currently unknown function of chromatin interactions in gene regulation.

ABC model: Chromatin interactions are defined based on a statistical model that measures significance of interactions compared to the local

neighborhood or expected distance-matched contact frequency. A recently proposed activity-by-contact (ABC) model complements chromatin

interactions by taking actual chromatin contact frequency into account. It employs an equation that multiplies the enhancer activity and its contact

frequency with the gene promoter to predict the contribution of an enhancer to gene expression [15].

CRD: Previous studies have shown that co-accessibility between two regulatory elements can be used to construct cis-regulatory networks and

infer putative target genes of regulatory elements [9,41]. Cis-regulatory domains (CRDs) further elaborate this strategy by defining domains based

on interindividual correlation between chromatin activity peaks [42]. CRDs resemble TADs in that they regulate gene expression by bringing

together different regulatory elements such as enhancers and promoters, but are finer in scale and highly dynamic. Importantly, CRDs provide

insights into how non-coding variation impacts gene regulation by linking active regulatory elements to gene expression.

eQTL: A large pool of genetic variation and gene expression profiles from hundreds of individuals allows us to identify genetic variation that is

statistically correlated with gene expression. Termed expression quantitative trait loci (eQTLs), these regulatory variants are playing an increasing

role in inferring the target genes and predicting the biological impact (quantitative changes in gene expression) of the non-coding risk variants.

Notably, different approaches to capture regulatory dynamics converge to reveal similar regulatory networks and reinforce findings across studies

and techniques. For example, chromatin activity-based CRDs share similar domain-like structures with chromatin contact-based TADs [42]. On a

finer scale, about 30% of eQTLs are also supported by Hi-C-based chromatin interactions [6]. By combining multiple measures, we are able to

enhance the predictive power of gene regulatory networks, as shown by the accuracy of the ABC model [15]. Therefore, amalgamation of multi-

faceted functional genomic datasets that include physical proximity, regulatory elements, and regulatory variants would provide mechanistic

insights into how genes are regulated.
highlight the importance of deciphering developmental

stage-specific regulatory codes in order to understand the

impact of genetic variation on transcriptional regulation

across brain development [16–18].

Because of the unique chromatin architecture and cis-
regulatory variation during brain development, many

studies have been conducted to assess their role in the

development of psychiatric disorders. Intriguingly, genes

that harbor rare de novo mutations in autism spectrum

disorder (ASD) were enriched for transcriptional regula-

tors expressed during early brain development, suggest-

ing that their dysregulation in the developing brain may

lead to neurodevelopmental disorders [14,19,20]. In addi-

tion, genes with rare de novo mutations in schizophrenia

formed co-expression and protein interaction networks in

the developing prefrontal cortex (PFC) [21].

Similar findings have been observed for common varia-

tion associated with psychiatric disorders. Cross-disorder

meta genome-wide association studies (GWAS) have

found genomic regions associated with the development

of multiple neuropsychiatric disorders (pleiotropic loci)

[22,23�]. Putative target genes of the pleiotropic

loci showed elevated expression during fetal brain
www.sciencedirect.com 
development, suggesting that pleiotropy among psychi-

atric disorders may have shared neurodevelopmental

origins. Genes associated with individual psychiatric

disorders also showed similar enrichment during fetal

brain development [24�].

Despite the importance of decoding neurodevelopment

in psychiatric disorders, the majority of epigenetic and

transcriptomic profiling has been conducted in adult

postmortem brain tissue because brain development

precedes diagnosis [25,26]. Human brain organoids can

provide an attractive model system to fill this gap by

recapitulating cellular diversity [27] and epigenetic pro-

gramming [28�] of the developing human cortex. In

addition, organoids can model early corticogenesis, which

is a developmental stage from which in vivo tissue is

difficult to obtain [29]. On the contrary, another study

reported that organoids do not fully recapitulate cellular

subclasses, areal specification, and maturation observed

during in vivo brain development [30], highlighting

the need for optimization and standardization of this

miniature brain-in-a-dish to unveil neurodevelopmental

disease mechanisms. Collectively, epigenetic and

transcriptomic characterizations of organoids that are

derived from patients with high polygenic risk scores or
Current Opinion in Genetics & Development 2020, 65:1–8
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loss-of-function mutations in neurodevelopmental disor-

der risk genes [19,20,31] could permit the identification of

a disease mechanism operating during the critical period

for causing psychiatric disorders.

Given that the earliest traces of many psychiatric disorder

risk genes converge on neurodevelopment, targeted

treatments may need to be designed to act during this

stage. In line with this finding, hyperexpansion of the

cortical surface area has been found in asymptomatic

infants later diagnosed with ASD [32], suggesting that

the developmental alterations may arise earlier than the

behavioral symptoms. An early intervention that prevents

the improper downstream cascades before behavioral

symptoms develop may be useful in treating psychiatric

disorders.

Cell-type specific gene regulatory landscape
and its implications for psychiatric disorders
The human brain is exquisitely complex in its cell-type

composition. In order to achieve such cellular diversity,

different cell types emerge and disappear across different

developmental time periods, suggesting that cellular

complexity partly underscores highly dynamic develop-

mental transcriptomic landscape [5�].

Recent development of single-cell sequencing technol-

ogy has enabled deciphering cell-type specific gene reg-

ulatory architecture. One of the approaches, single cell

RNA sequencing (scRNA-seq), has elucidated the diver-

sity in transcriptomic signatures among brain cell types

and has shed light on groups of genes that mark distinct

cell types [43–45]. Notably, gene expression signatures

distinguished neuronal subtypes previously identified

based on morphology and spatial organization, as well

as previously unknown neuronal subtypes [44]. Further,

cellular expression profiles can be used to construct

lineage-specific trajectories of cellular differentiation

and maturation in the developing cortex [43].

Given the diverse functions of different cell types in the

brain, it is not surprising that different cell types exhibit

different regulatory architecture to support their specific

functions. For example, expansion of glia and subsequent

cellular heterogeneity in the adult cortex is a major factor

that differentiates chromatin architecture of the

adult cortex from the developing cortex [6]. Likewise,

epigenetic profiling of iPSC-derived neurons and astro-

cytes as well as sorted cells from the adult cortex have

demonstrated cell-type specific regulatory landscapes

that include enhancers and three-dimensional chromatin

interaction [7�,8,46�,70]. Furthermore, the process of

neural differentiation is accompanied by dynamic chro-

matin rewiring that involves changes in compartment,

TAD, and enhancer-promoter interactions [12,46�,47].
Therefore, it is critical to study chromatin dynamics in

a cell-type specific fashion in order to capture the full
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range of diversity and complexity of chromatin architec-

ture and consequential gene regulation. However, single

cell epigenetic datasets (e.g. scATAC-seq or scHi-C) of

the human brain are limited compared with scRNA-seq.

Recent development of joint single cell profiling assays

[48] as well as computational frameworks that integrate

multiple single cell genomic datasets [49] will help

decode cell-type specific gene regulatory landscape that

underlies cellular expression signatures.

Remarkable transcriptomic diversity among different

brain cell types suggests that cellular expression

signatures can be used to identify central cell types

associated with disease. Several tools have been devel-

oped to systematically identify cell types associated with

GWAS traits [24�,50–52]. These studies found that genes

associated with psychiatric disorders including schizo-

phrenia and ASD were highly expressed in excitatory

neurons [6,8,24�,46�,50,51,53], while genes associated

with neurological disorders were highly expressed in glia

[24�,54,55]. Together, these studies highlight the impor-

tance of understanding the contribution of different cell

types to the development of neuropsychiatric disorders,

as different cell types may have unique roles in disease

development [51].

Additionally, genetic variants identified as risk loci in

GWAS for different brain disorders may have distinct

regulatory roles in different cell types due to the cell-type

specific chromatin architecture [7�,46�]. For example,

Alzheimer’s disease associated SNPs physically interact

with BIN1 in a microglia-specific manner, and the

deletion of the SNP-containing enhancer leads to down-

regulation of BIN1 only in microglia [7�]. Similarly,

schizophrenia-associated SNPs physically interact with

PCHD genes in iPSC-derived neurons and neural pro-

genitors, but not in astrocytes [46�]. Given that psychiatric

disorders are strongly associated with excitatory neurons

[24�], transcriptomic and epigenomic characterization of

neuronal subtypes will be critical to deciphering the

precise biological impact of psychiatric disorder risk loci.

Finally, cell-type specific eQTL resources would

reveal how genetic variation is associated with cellular

expression profiles.

Unique human gene regulatory circuits for
unique human traits
Emergence of complex human behaviors mirror changes

in our brain structure that involve cortical expansion and

elaboration [56]. Given the high similarity of protein-

coding sequences between human and non-human pri-

mates, the evolution of regulatory elements and resulting

changes in gene expression has been proposed to play a

major role in human evolution [57]. Indeed, a recent

comparison of transcriptomic signatures between human

and rhesus macaque across cortical development has

revealed that protracted maturation is a unique feature
www.sciencedirect.com
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of the human cortex [58]. Regulatory elements including

human accelerated regions (HARs) and human-gained

enhancers (HGEs) may contribute to this human-specific

protracted cortex maturation [59]. HARs involve human-

specific sequence changes in the genome [60], while

HGEs involve changes in enhancer usage [61,62].

Putative target genes of HARs and HGEs based on

Hi-C evidence suggest that these elements are highly

expressed in radial glia, a cell type associated with

enhanced neurogenic niche and cortical expansion

[9,12,59]. Recent CRISPR-based genetic screening has

further confirmed their role in neurogenesis [63]. Intrigu-

ingly, both HARs and HGEs interact with neurodevelop-

mental disease risk genes, implicating the contribution of

human brain evolution to disease susceptibility [59].

Independent findings have also reported that copy

number variation (CNV) and biallelic mutations impact-

ing HARs are enriched in individuals with ASD [64]. In

addition, genes associated with neuropsychiatric disor-

ders were tightly linked to the expression profile of radial

glia, highlighting their role in cortical evolution and

psychiatric disorders [22,24�]. These results collectively

suggest that human evolutionary regulatory elements are

associated with psychiatric disorders, underscoring the

fact that many of these disorders are unique to human

behaviors and traits.

Taken together, evolution of gene regulatory circuits leads

to gene expression changes that are unique to humans.

Human-specific gene regulation may have different effects

on different cell types, especially on radial glia and progen-

itor cells which contribute to human cortical evolution and

expansion [65]. Given the role of radial glia in determining

the number and type of brain cells during corticogenesis,

changes in their gene expression profiles may have a

profound impact on brain development and function.

Therefore, it is imperative to consider human-specific

regulatory elements and their impact on neurodevelop-

ment to better understand the complexity behind human

traits and behavior.

Conclusion
The complexity of the human brain originates from its

complex developmental trajectories, unparalleled diver-

sity of cellular composition, and intricate neuronal wiring

within brain circuits. Recent advances in genomic tech-

nologies have begun to discern the gene regulatory prin-

ciple that governs developmental dynamics, cellular

diversities, and brain circuits. Distinct transcriptomic

signatures have been observed in different brain regions

at different stages of development, indicating that

divergent regulatory strategies are used for different brain

regions across development [5�]. This developmental and

regional transcriptomic diversity is tightly coupled with

cellular complexity, as different classes of cells are

detected in different stages and brain regions. It is

increasingly recognized that different cell types exhibit
www.sciencedirect.com 
distinct gene regulatory landscapes, which would affect

transcriptomic signatures and morphological features

[7�,46�]. However, we are far from identifying a compre-

hensive regulatory principle. First, the majority of studies

are conducted in the cortex, while subcortical regions also

play an important role in brain function and disease.

Second, cells do not work in isolation, highlighting the

need for spatial mapping, which provides connectivity

within brain regions, layers, and microcircuits. Spatial

mapping of cellular expression and epigenetic signatures

may help reconstruct the brain circuits at a single cell

resolution [66]. Third, the developmental dynamics of

cell-type specific transcriptomic and epigenetic signa-

tures are not well understood. Single cell lineage tracing

would be able to delineate the full spectrum of cellular

diversity across developmental trajectories [67]. Fourth,

the electrophysiological property of a cell is a key feature

for fully capturing the functional diversity across different

neuronal subclasses, while its relationship to molecular

signature needs to be further examined [68,69]. Finally,

neurons have a unique feature of activity-dependent

transcription, and the precise regulatory logic underlying

this process is yet to be identified [71].

Importantly, brain disease needs to be understood as a

whole. The functional impact of a risk variant needs to be

carefully examined in a developmental stage, cell-type,

and brain region specific manner. Understanding the gene

regulatory principle that spans multiple brain regions,

developmental stages, and cell types is therefore essential

to providing mechanistic insight into psychiatric

disorders.
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